Charges and Coulomb's Law

1. A metal sphere has a net negative charge of 1.1×10^{-6} coulomb. Approximately how many more electrons than protons are on the sphere?

a)
$$^{\circ}$$
 5.7 x 10¹² b) $^{\circ}$ 9.9 x 10¹² c) $^{\circ}$ 6.9 x 10¹² d) $^{\circ}$ 1.8 x 10¹²

b)
$$9.9 \times 10^{12}$$

d)
$$1.8 \times 10^{12}$$

2. What is the net static electric charge on a metal sphere having an excess of +3 elementary charges?

a)
$$^{\mathbb{C}}$$
 4.8 x 10¹⁹ C b) $^{\mathbb{C}}$ 3.0 x 10⁰ C c) $^{\mathbb{C}}$ 4.8 x 10⁻¹⁹ C d) $^{\mathbb{C}}$ 1.6 x 10⁻¹⁹ C

b)
$$3.0 \times 10^{0} \text{ C}$$

3. A sphere has a net excess charge of -4.8×10^{-19} coulomb. The sphere must have an excess of

4. An object can not have a charge of

a)
$$^{\bigcirc}$$
 8.0 × 10⁻¹⁹ C **b)** $^{\bigcirc}$ 4.5 × 10⁻¹⁹ C **c)** $^{\bigcirc}$ 9.6 × 10⁻¹⁹ C **d)** $^{\bigcirc}$ 3.2 × 10⁻¹⁹ C

5. If a small sphere possesses an excess of 5 electrons, the net charge on the sphere is

b)
$$-8.0 \times 10^{19} \text{ C}$$

a)
$$^{\circ}$$
 -3.2 x 10²⁰ C b) $^{\circ}$ -8.0 x 10¹⁹ C c) $^{\circ}$ -8.0 x 10⁻¹⁹ C d) $^{\circ}$ -3.2 x 10⁻²⁰ C

6) Calculate the electrostatic force between an electron and a proton a distance of 2.0 x 10⁻⁶ m apart.

7) A charge of 3.0 x 10⁻⁶ C is located a distance of 1.0 x 10⁻⁴ m from a second charge of 2.0 x 10⁻⁵ C. What is the magnitude of the electric force?

8) Find the force between a charge of $+4.0 \times 10^{-7}$ C and a charge of -5.0×10^{-7} C when they are a distance of 1.5 $\times 10^{-3}$ m apart.